Journal of Sound and Vibration (2001) 248(1), 31-42 R
doi:10.1006/jsvi.2001.3715, available online at http://www.idealibrary.com on I1DE %lib

®

ESTIMATION OF THE HOPF BIFURCATION POINT
FOR AEROELASTIC SYSTEMS

A. SEDAGHAT, J. E. CooPEr, A. Y. T. LEUNG AND J. R. WRIGHT

Dynamics & Aeroelasticity Group, Manchester School of Engineering, Manchester M13 9PL, England.
E-mail: asedaghat@fs1.eng.man.ac.uk

(Received 16 November 2000, and in final form 22 February 2001)

The estimation of the Hopf bifurcation point is an important prerequisite for the
non-linear analysis of non-linear instabilities in aircraft using the classical normal
form theory. For unsteady transonic aerodynamics, the aeroelastic response is
frequency-dependent and therefore a very costly trial-and-error and iterative scheme,
frequency-matching, is used to determine flutter conditions. Furthermore, the standard
algebraic methods have usually been used for systems not bigger than two degrees of
freedom and do not appear to have been applied for frequency-dependent aerodynamics. In
this study, a procedure is developed to produce and solve algebraic equations for any order
aeroelastic systems, with and without frequency-dependent aerodynamics, to predict the
Hopf bifurcation point. The approach performs the computation in a single step using
symbolic programming and does not require trial and error and repeated calculations at
various speeds required when using classical iterative methods. To investigate the validity of
the approach, a Hancock two-degrees-of-freedom aeroelastic wing model and
a multi-degree-of-freedom cantilever wind model were studied in depth. Hancock
experimental data was used for curve fitting the unsteady aerodynamic damping term as
a function of frequency. Fairly close agreement was obtained between the analytical and
simulated aeroelastic solutions with and without frequency-dependent aerodynamics.

© 2001 Academic Press

1. INTRODUCTION

The influence of non-linearities on modern aircraft is becoming increasingly important [1]
and the requirement for more accurate predictive tools grows stronger. These
non-linearities can be due to structural (free-play, backlash, cubic stiffness), aerodynamic
(moving shocks and transonic effects) or control (time delays, control laws) phenomena. The
non-linear flutter behaviour such as limit cycle oscillations (LCO) has become of increasing
importance over the last few years, although such problems have been noted since the
1970s.

There is an urgent need for a predictive capability of non-linear aeroelastic phenomena.
Such ability would enable flight flutter tests to be completed faster and with a greater degree
of safety. Although not desirable, LCO is essentially a fatigue problem, whereas flutter is
usually catastrophic and must be avoided at all costs. An accurate LCO/flutter prediction
capability would reduce significantly the number of flights required in any flight clearance
test programme with current costs being estimated at around $70k per test flight.

There has been much work in recent years [2-4] devoted towards the characterization of
non-linear aeroelastic behaviour. This work has primarily consisted of simulating the
response of the acroelastic system through numerical integration, although there are a few
known instances of experimental verification [5]. There has also been a significant effort
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devoted [6, 7] to improving unsteady modelling through the coupling of the aerodynamic
and structural models. Significant headway has been made towards solving the problem,
particularly in the transonic region. However, there are still major problems inherent due to
the enormous computational resources required for even the simplest cases.

A number of mathematical techniques [8-12] exist in the non-linear dynamics
community that enable the stability boundaries of a defined non-linear system to be
computed and the possible instabilities to be characterized. Normal form theory is the
method most used for determining the characteristics of limit cycle oscillations [13-15].
However, estimation of the Hopf bifurcation point is a substantial prerequisite for the
normal form theory analysis of non-linear instabilities in aircraft.

Flutter or the Hopf bifurcation point is the condition when an aircraft component (e.g.,
wing, control surface or tail-plane) exhibits self-sustained divergent oscillations (Dowell
et al. [16]). The speed at which this occurs is known as the flutter speed. At speeds below the
flutter speed, any initial dynamic structural vibrations will be damped, whereas at speeds
above the flutter speed any initial dynamic structural disturbance will grow, leading to
structural failure if not limited by aerodynamic or structural non-linearity. It is essential
that all aircraft be designed such that flutter will not occur. Besides developing sophisticated
structural, aerodynamic and aeroelastic mathematical models, a significant degree of testing
on the ground and in the air is undertaken to demonstrate that flutter does not occur
throughout the desired flight envelope (with a 20% safety margin). Ground vibration and
flight flutter tests are mandatory in order to satisfy airworthiness regulations.

Having estimated the mathematical model, the flutter stability of an aircraft is usually
examined by calculating the eigenvalues of the state-space form of the aeroelasticity
equation at different flight conditions.

In this classical method, the frequency and damping ratio of each of the complex modes
derived from the eigenvalue solution are plotted against airspeed (or Mach number). A zero
damping value indicates the onset of flutter. For unsteady acrodynamics, the above method
is more complicated because a trial-and-error frequency-matching scheme must be used in
order to obtain the frequency of the mode that causes flutter to occur.

A simple approach to obtain exact estimates of the flutter frequency and speed for
a binary flutter system, based upon the Routh—-Hurwitz method, has been known for many
years. However, it has not been feasible to use it on larger systems or to include
frequency-dependent aerodynamic forces.

In this paper, an approach is developed to calculate the flutter speed and frequency of
aeroelastic systems with more than two degrees of freedom (d.o.f.) and also the inclusion of
frequency-dependent aerodynamics. A feature of the method is the use of symbolic
programming to perform all the calculations. The desired quantities can be determined
without the need for iteration. The method is validated using a 2-d.o.f. rectangular wing
model, with and without unsteady aerodynamics. A further example, a cantilever wing
model, shows the use of the approach on higher order models.

2. FLUTTER CHARACTERISTICS OF A GENERAL 2-d.o.f. SYSTEM

The equations of motion for a general multi-d.o.f. aeroelastic system can be written as
Mq + Lq + (Kaero + Kstruct)q = 07 (1)

where q is the vector containing the generalized co-ordinates, M is the mass matrix, L is the
aerodynamic damping and K,,, and K,,, are aerodynamic and structural stiffnesses



THE HOPF BIFURCATION POINT 33

respectively. In general, aerodynamic terms can be expressed as functions of the airspeed
V and the frequency of vibrations w. Using the state-space technique for a two-d.o.f. system,
the above system may be written in first order form as

q|_ 0 I q
|:q:| B |: - M_I(Kaero + Kstruct) - M_lL:| |:q:| ’ (2)

where [ is a 2 x 2 identity matrix. Equation (2) is expanded to form a 4 x 4 matrix system

Z‘l 41 0 0 1 0 Zq

. Z.Z q.z O 0 0 1 Zy

P el R L : 3)
Z3 q1 mzy M3y M3z May Z3
Zy4 P Mgy Mgy Myz Mgy Zy4

where the matrix indices m;;, i =3, 4, j=1, 2, 3, 4 are determined based upon the
mathematical model used and are functions of the airspeed V' and the frequency w. The
corresponding fourth order characteristic polynomial of the system can be written as

P(J) = 2* + a 23 + a2? + azl + a, = 0. @)

2.1. ROUTH-HURWITZ APPROACH

Using the classical Routh—-Hurwitz approach it can be shown that the critical condition
for flutter to occur is

ayaxay — aja, — a3 =0, (5)

from which the flutter speed can be calculated. The flutter frequency is then found as

wp = \/as/ay. (6)

2.2. SYMBOLIC APPROACH

The characteristic polynomial (4) can be divided by (A% + w?) corresponding to double
pure imaginary roots, ( & iw), which may correspond to the flutter speed.

P()) = (22 + 0*)(A* + ar + (a; — ©*)) + R, (7
where R, the remainder, is given as
R = (a3 — alwz);b + (a4 — (az — a)z)wz). (8)

It may be noted that the terms in the remainder R are only a function of the airspeed
V and the frequency w. More importantly, if a physically acceptable solution for airspeed
and frequency are found such that the remainder becomes zero, then the characteristic
polynomial (4) has double pure imaginary roots ( + iw) corresponding to the Hopf
bifurcation point (flutter condition).

This means that at the flutter speed the characteristic polynomial must be divisible by
(A* + w}), which yields the following equations to be solved for the flutter speed V5 and the
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flutter frequency wg:
fi(p, Vi) = a3 — a;0f = 0, falwp, V) = as — (a; — of)wi =0. ©)

The first equation in (9) yields the same flutter frequency as evaluated in equation (6). This
method has been programmed using the symbolic programming code Mathematica.
Comparison of both approaches for a 2-d.o.f. system shows that exactly the same solution is
found using each approach.

3. EXTENSION OF THE METHODOLOGY TO HIGHER ORDER SYSTEMS

It is somewhat complex to extend the application of the Routh-Hurwitz method to
higher order aeroelastic systems as the determinants that need to be solved get very
complicated and there is no obvious criterion to choose for flutter, unlike the 2-d.o.f. case.
However, the extension of the symbolic approach is relatively strightforward.

For example, a 3-d.o.f. system yields the following characteristic polynomial:

P(;\,) = /16 + alis + a2)v4 + a3/’{3 + a422 + as)u + de. (10)
The sixth order polynomial may be similarly divided by (12 + w?) to yield the remainder

R = (as — w(as — a,0p) A + (a6 — 0F(ay — 0F(az — ©F))) (11)

and hence the following set of polynomial equations to be solved for flutter speed and
frequency:

filor, Vi) = as — w%(a_q, - 61160%) =0,
(12)

Sfolwp, Vi) = ag — wfg(a4 - (012?(@2 - w%)) =0.

In general, for a polynomial of order 2n, P,,(/), the remainder of division by (A? + w}) can
be written as

R =(azy,—1 — wlzr(azn—3 - 60:% - (az — 6116012?))) < (2n —2)/24
(13)

+ (az, — w%(azn—z - CUIZT ce(ay — CU%))) - 2n/2.

where the bracket subscripts represent the number of brackets.

4. HANCOCK RECTANGULAR WING MODEL

Consider a rigid wing of constant chord (shown in Figure 1) pivoted at its root in bending
7 and torsion 0 such that there is no stiffness coupling between the motions (Hancock et al.
[17]). The equations of motion for the wing model is given by

AG + (pVB +D)g + pV*(C+E)q=0 (14)
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Figure 1. Schematic of the rectangular wing model.

where q = (y 0)" is the vector of generalized co-ordinates. For the simple wing model, it can
be shown that

L, L, cs*al6 0 0  cs?a/4 k, 0
A= Y v B= C= E = v
[179 Iy } [— c*s*ea/d  — (c3s/2)MJ’ [O —c?sea2 | 0 ko
(15)

in which I,, Iy, and I, are the moments of inertia in bending, in pitch and their product,
respectively and k,, ko, are rotational stiffnesses in bending and torsion respectively. The
parameters ¢, s, e and a are the chord length, the wing semi-span, the non-dimensional
distance of flexural axis from aerodynamic centre, and the two-dimensional sectional lift
curve slope respectively.

In deriving equation (14), quasi-steady aerodynamics was used with the inclusion of the
M, term, a non-dimensional aerodynamic torsional damping derivative, which is
introduced to represent an unsteady aerodynamics effect. The structural damping D has
been ignored here; however, it can be included without reducing the generality of the above
analysis.

Consider the Hancock wing model shown in Figure 1 with the characteristics: s = 10m,
¢=3m,x =06cm,x;=05cm,m=200kg, a=2rp = 1225kg/m> where mis the mass
of the wing and (X, Y.m) are co-ordinate components of wing centre of mass x, and a are
the distance of the flexural axis from the wing leading edge and two-dimensional lift curve
slope respectively. p is the air density at zero altitudes. The moments of inertia and stiffness
coefficients are determined as

I, =ms?/3 = 6:667 x 10° (kgm?), Iy = mc*x2)} + m(Xem — X)*c* = 2:8255 x 10° (kgm?),
g = m(Xe, — x;)0-45s¢ = 81 x 10* (kgm?), k, = (4n)*I, = 1-0528 x 10° (kgm?/s?),
ko = (20m)2 me2/12 = 5922 x 10° (kg m?/s2). (16)

The parameters e, I,, and M, are varied through the following examples accordingly for
different flutter conditions.
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Figure 2. Frequency and damping trends for the case with constant aerodynamics.

4.1. EXAMPLE WITH CONSTANT AERODYNAMICS

Consider the Hancock wing model with the wing mass-balanced (ie., I,y = 0), the
unsteady aerodynamic damping term set as My; = — 01 and e = 0-25. Applying the
approach developed in this paper leads to the expressions

fi(op, Vi) = 120909 — 0:00442 Vi — 058303 = 0,
fr(wp, Vi) = 330959 — 4839 VZ — 367-496w2 + 0:0273 VEwE + wi = 0, a7

from which it was found that wy = 14391 rad/s and Vy = 7-523 m/s.

Figure 2 shows the corresponding eigenvalue solution or damping plot for this case. The
circles indicate the results found using the symbolic approach. It can be seen that there is an
exact agreement between the symbolic and iterative approach.

4.2. EXAMPLE WITH FREQUENCY-DEPENDENT AERODYNAMICS

The next example is an extension of the previous example, where again the wing is
mass-balanced about the flexural axis (i.e., I,, = 0) but now the damping term M, is
assumed to vary depending upon the value of the frequency parameter v. Based upon the
values of v given in Hancock et al. [17] My was curve fitted [18] to obtain the expression

(— M;(v))v = 0-491336v/(0-1996901 + ). (18)

This simple function can be easily inserted into the symbolic approach, and the flutter
speed and frequency are found in a single step. A residual between + 5% was obtained
between the function and the data. This could be reduced if a more complicated
curve-fitting expression was used.
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Figure 3. Frequency and damping trends for the case with frequency-dependent aerodynamics (the Hancock
wing model with 2-d.o.f.).

The symbolic equations are now found as
f1vp, Vi) = 120985 + (4-541 — 0-0641(0-223 + vp)(0-05 + 0-0264vy + vi) VF)/
(0-1997 + vp) = 0,
fo(vp, Vi) = 330959 — 3:9296 V7 — 40-8329vi Vi + 0-00276vi Vi

1% _ 0-00184vi V3 _
81 0-1997 + v

(19)

which were solved to give estimates of wp = 1445 rad/s and Vi = 5979 m/s. Comparison
with the eigenvalue solution or damping plot including frequency matching, as shown in
Figure 3, again indicates that there is an exact agreement.

5. A CANTILEVER WING MODEL

Consider a simple cantilever wing model, i.e., a uniform flat plate with the thickness ¢,
fixed in at one end but freely unsupported at the other end as shown in the Figure 4. This
wing model is used to provide a multi-degree-of-freedom example with possible extension to
a more realistic aircraft wing. A Cartesian co-ordinate system is used to describe the wing.
According to the Rayleigh-Ritz model, the motion of the wing can be approximated by the
summation of a finite number of mode shapes multiplied by the generalized co-ordinates.
Here, the bending and torsion modes for the wing are considered where they can be
approximated by

n

h = z Zi+1qi» 0= Z ZiQm+i9 (20)
i=1

i=1
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Flow direction z-axis

Figure 4. A cantilevered rectangular wing model.

where h is the displacement of the wing tip in the y direction, 0 is the rotation of the wing tip
along the z-axis, m is the total number of bending modes, and n is the total number of
torsion modes.

The Lagrange equation [19] was used for deriving equations of motion and is given by

(d/d0)(0T/0¢:) + 0F/0q; — 0T/0q; + 0Vpr/0q; = Qs (21)

where T is the kinetic energy, Vpg the potential energy, F the dissipation force applied to the
system, Q; the ith generalized force and ¢; is the ith generalized displacement.

Based on the quasi-steady strip theory and the assumptions made by Dimitriadis [20] for
evaluating the system of equations, the expressions were derived for the mass, stiffness, and
damping matrices of the wing model (see Sedaghat et al. [21]).

5.1. EXAMPLE OF A 3- AND 5-d.o.f. SYSTEMS WITH CONSTANT AERODYNAMICS

Three- and five-d.o.f. aeroelastic systems were created consisting of two bending and one
torsion modes, and two bending and three torsion modes of the cantilever wind model
respectively. As before, strip theory with the Hancock modification to include unsteady
aerodynamics was employed. When the approach developed in this paper was applied to
both systems, it was found that for the 3-d.o.f. case wp = 111:23 rad/s and Vy = 93-94 m/s,
and for the 5-d.o.f. case wr = 99-71 rad/s and Vy = 86-:56 m/s were predicted based upon the
symbolic approach. Figures 5 and 6 show the corresponding eigenvalue solution plots. The
flutter speed and frequency are estimated fairly accurately in both cases.

5.2. EXAMPLE OF 3- AND 5-d.o.f. SYSTEMS WITH FREQUENCY-DEPENDENT AERODYNAMICS

As a final example, the same 3- and 5-d.o.f. aeroelastic systems are used as above, but now
the damping term M; is assumed to vary depending upon the value of the frequency
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Figure 5. The 3-d.of. cantilever wing model with constant quasi-steady aerodynamics (Vy = 93-9415 m/s,

op = 111228 rad/s, My = — 0-21991).
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Figure 6. The 5-d.o.f. cantilever wing model with constant quasi-steady aerodynamics (Vr = 86-5602 m/s,

wr = 997136 rad/s, My = — 0-21991).

parameter v as is defined in equation (18). For the case with 3-d.o.f. the results outlined
below were obtained for the estimation of the bifurcation (flutter) point, which is exactly in
agreement with the frequency matching solution shown in Figure 7.

3-d.of. system: 2 bending modes, 1 torsion mode Vy= 105424 m/s, vy = 0-245096,
op = 86:1299 rad/s, My = — 0-491336/(0-1996901 + v), My(vr) = — 1-10466.

Similarly for the case with 5-d.o.f., the approximation outlined below is in very good
agreement with the frequency-matching solution shown in Figure 8.
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Figure 7. The 3-d.of. cantilever wing model with frequency-dependent quasi-steady aerodynamics
(Ve = 105424 m/s, vy = 0245096, wp = 861299 rad/s, M;(vy) = — 1-10466).
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Figure 8. The 3-d.o.f cantilever wing model with frequency-dependent quasi-steady aerodynamics
(Vg = 968871 m/s, v = 0:237812, wp = 76:8031 rad/s, M;(vy) = — 1:12305).

5-d.o.f. system: 2 bending modes, 3 torsion modes Vi =96-8871 m/s, vy = 0237812,
wp = 76-8031 rad/s, My = — 0-491336/(0-1996901 + v), My(vy) = — 1-12305.

6. CONCLUSIONS

An approach using symbolic computation has been introduced for calculating the flutter
condition of linear multi-d.o.f. aeroelastic systems. The method can be employed to make
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the derivation and solution of algebraic equations for any higher order aeroelastic system
fairly straightforward. A feature that does not seems feasible for other standard algebraic
methods. From the literature, such algebraic capability for aeroelastic systems bigger than
2-d.of. including complex unsteady aerodynamics, has not been observed. The need for
frequency matching is also eliminated if the unsteady aerodynamics is curve fitted as
a function of the frequency parameter. This approach has shown advantages in terms of
speed and accuracy, for the test cases studied here, over more traditional methods that
calculate a large number of eigenvalues at different airspeeds until the approximate flutter
speed and frequency are obtained. The method has been demonstrated successfully on
a number of simple aeroelastic systems.
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